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ABSTRACT (b
picl

A brief summary of the advantages and uses of digital
differential analyzers is provided. After reviewing the principles
of operation, coding, and scaling of digital integrators, the detailed
design of an integrator is discussed. The design includes two full
adder/subtractor units, two variable length shift registers to pro-
vide internal memory, and utilizes a binary method of coding
increments. Implemented with integrated circuits, the integrator
is demonstrated with an example problem. The experimental .

results are tabulated and copmpared.
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CHAPTER 1
INTRODUCTION

Features of Digital Differential Analyzers

The need for a simple, compact digital computer suitable
for solving differential equations led to the development of the
Digital Differential Analyzer (DDA). The DDA may be put into the
class of analog computers since it is a device consisting of a num-
ber of separate functional units, each unit containing all elements
required for the particular function. It is similar to analog ma-
chines in that the quantity of apparatus needed depends upon the
complexity of the problem. The functional units are interconnected
directly in accordance with the structure of the problem being
solved. However, within the functional unit, the computation is

digital.

The basic functional unit in a DDA is the integrator. If
only one integrator may operate at one time due to there being only
one arithmetic unit, then it is a serial DDA. In a parallel DDA all
integrators may operate simultaneously. The parallel DDA is
more complex in construction but is naturally faster than the serial

DDA. Accuracy of the DDA may be increased at the expense of



running time; hence, the potential accuracy greatly exceeds that of

other types of analog computers.

An important feature is that the independent variable need
not be time; Also it is not necessary to manipulate problems in
order to avoid integration with respect to a variable other than the
independent variable. These features are possible since all inputs
to the integrators are pulse trains which need not be dependent

upon time.

The outstanding features of digital integrating devices have

been itemized by F. V. Mayorov as follows:

"a) In integration, the computer operates with increments
of input quantities and not with the quantities themselve as in the
arithmetic machine. This permits considerable increase in com-

puting speed and in switching (or interconnection) of the integrators.

''b) By using integration as a basic operation, operations
of multiplication, division, extraction of a root, sine of a number,
and logarithm calculation take a time equivalent to that for two or

three addition operations. Insertion of various experimental and



tabular values into a digital integrating computer can be simpler

than in an arithmetic machine . .

"c) The memory access time in a digital integrating
computer is practically zero. The data reaches the machine in a
continuous flow, one code after the other, without requiring an

access from the memory , .

"d) Solution of a relatively complex problem in a DDA

does not require an internal memory of large capacity . .

""e) Depending on the required accuracy, the digital inte-
grating computer possesses flexibility in computing speed. A
given problem may first be solved with a low accuracy but at a
high speed. The same problem is then solved with a higher accu-

racy but longer solution time. "

If the reader is familiar with the mechanical Bush
. analyzer, G. F. Forbes states that ''any problem capable of being
solved on the Bush analyzer may be solved more easily on the DDA.

Problems too complex for the Bush analyzer can be done on the

DDA."
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Uses of DDA's

Although the DDA may be used for scientific computation
or simulation, it is primarily used for automatic control. The

following uses for DDA's were noted by A. V. Shileiko in his book,

Digital Differential Analyaérs, originally published in Moscow,
1961:

"Litton Industries have created a digital differential
analyzer, now being tested by naval specialists with a view to using

it in aircraft.

"A DDA flight-tested in the X-10 rocket occupied . 081 m3,

weighed 66 kg, and consumed 100 W, precisely 1/12 of the con-
sumption of its valve-based predecessor. The device performed
93 integrations and enabled both trigonometric and differential

equations to be solved.

'""Recent advances have led to newer types of digital inte-
grating computers . . . developed by General Electric .
These compact computers, which are designed for missiles,
fighters, and bombers, are also used for control of Polaris mis-
siles in submarines and for inertial navigation of the missiles

themselves . . . "



———— —— _———— e

This report first explains the principles of operation of
digital integrators used in DDA's. ' Then the design and implementa-

tion of such an integrator is described.



CHAPTER 1I

PRINCIPLES OF OPERATION

‘Data Transfer within the Integrator

The integration process z = [ydx is defined

Mp

lim, y. Ax
Ax>0 j=1

which can be approximated by

shown in Figure 1.

This is the familiar concept of summing rectangular

strips to obtain the area under a curve, i.e., the integral. If Ax

were considered to be a unit distance, the expression reduces to
‘ z = X Y- The digital integrator discussed in this thesis is based

on this expression.

\ Figure 2 shows how this expression could be implemented.
For each integration step the change in ordinate values,
Ay = Yj - yj 1’ is accumulated in the D register. This is added

to Yj-l by 21 to produce yj in the Y register. The Z register
6

—
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Figure 1 Integration Approximation
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Figure 2 Integrator Block Diagram
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already contains

j-1

zZ y
=1 4
Upon indication of another Ax, the new value of y, y i’ is added to

the contents of z by Z_ to produce

2

Note that the Z register would have to be quite large to
contain
J
zZy

q=1 %

for an arbitrary j. Therefore, instead of storing the entire value

of z, the Z register is limited to the capacity of the Y register.
The overflow from the Z register is interpreted to be the change in
the integral, Az. In Figure 3 the Z register has been renamed the
S register since it only contains the less significant part of the

integral . z.

The operation shown in Figure 3 may be expressed as

follows:



gy
0
-N )
dz = p y dx where N is the

number of bits in the Y register.

z = z0+p-N / ydx

%0

Thus upon summing the Az output pulses, a value pro-

portional to fydx is obtained.

G ading

There are two popular methods of coding the increments
Ax, Ay, Az. In the ternary method a + 1 corresponds to a positive
increment, -1 to a negative increment, and 0 to zero increment.
This method requires a + 1 and a -= 1 line for each input and output
of the integrator. If pulses were used to transmit the increments,
a pulse on either line could indicate the respective increment, and

the absence of a pulse on both lines could indicate zero increment.

The second method is the binary system of coding incre-
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ments. In this system a pjulse could be used to indicate a positive
increment and the absence of a pulse to represent a negative in-
crement. A zero increment would be transmitted by alternating
+1 and - 1. The circuitry involved in implementing this method is
less than for the ternary method. On the other hand, the ternary

method is more accurate.

At this point it is appropriate to digress a moment to
mention integration using the trapezoidal rule. In this method
rather than summing YysYpre o Voo the mean ordinates, Yo =

A 1/2 Ay, are summed. See Figure 4.

This results in a more accurate approximation of the
integral. However, Mayorov points out that in the binary system
of coding increments the integration error may amount to a least
significant bit in the Y or S register. This error is considerably
larger than the error resulting from approximating the integral by
rectangles. Hence the trapezoidal method is justified only if the

ternary method of coding increments is used.

Returning to the subject of coding, the numbers contained

in the Z, Y, and D registers are usually represented in some form
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of the binary code. One basic form with a few variations will be

considered here.

Let the Y register contain numbers of the form
Y42 Ynt1 Yn Yoot V2 Yy where y, are the binary digits 0 or 1.

Bits Y, through y, are the information bits, Y41 denotes sign, and

Yn+2 is the overflow bit.

Let Vo4 © 1 denote a positive number and let Yol - 0
denote a negative number. When Yoel - 1 let the information bits
contain the true binary form of the number to be represented. For
Yn+1 = 0 let the information bits contain the two's complement of

the absolute value,

The two's complement, denoted ‘r(N), is defined Zn - N
where n is the number of bits in N. The Y12 bit will be discussed

later.

Let the contents of the S register be similarly defined and

s, 8,. KExamples follow for five in-

be of the form s 2 8y

n+2 ®n+1 "
formation bits where the underlined bit is the sign bit:

Y = +12 Y register = 101100

S = -7 S register = 011001
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There are at least two acceptable ways to code the D
register. In one the meaning of the sign bit is reversed but the

same rules apply to the information bits.

ZAy > 0 D = Z Ay (base 2)
ZAYy <0 D = 2"+ 7(Z Ay)
For example,

ZAy = +12 D

001100
TAy = -5 D=111011

With this definition for the D register, an adder for Z‘l

will be sufficient to produce correct results when £ Ay is added to

Y, regardless of the sign of either Y or £ Ay. For example,

Examgle 1

Y >0 ZTAy >0

n

y
Y 2 +Y; D = Z Ay

D +Y = 2" +y+3= Ay (2" indicates positive)
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Example 2
Y <0, ZAy>0, | Y| < | =aAy
Y = 7(Y); D = Z Ay
D +Y = 7(Y)+ ZAy

2" .Y + ZAy

i

2"+ (zAy-Y)

Z Ay - Y >0 since lYI < lEAyl

D +Y > 2" (2" indicates positive)
Example 3

Yj = +4, TAy = -7

Y, = 100100

D =111001

Y, ,, 011101 = -3

Another method of coding D is to let the information bits
contain the true binary form whether the number be + or -. Now

EZ must be an adder/subtractor. When dn is 1, 21 adds; when

+1

dn+1 is O, 21 subtracts. However, the sign bit of D must not

enter into the addition or subtraction.
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Exam21e4
Yj=-12 Yj=_(_)_10100
Z Ay = +3 D = +00011 »
Y = = .
P41 010111 9
ExamEIeS
YJ=+4 Y_]:lOOIOO
ZAy = -7 D=_-_-_00111
011101 = -3

During an integration process the Y register must not
overflow. If at the end of a cycle the overflow bit, Yo+ 20 contains
a 1, the integration must stop and the problem must be rescaled.

The S register is expected to overflow. When 8 412 1 then

AZ = +1; when sn+2 = 0, AZ = - 1. The combining of Y and

S for each Ax could be accpmplished with an adder for EZ. Several

examples follow:

Example 6

Let S0 = 0 and Y = 0 (constant)

S = 100000
Y = 100000

1000000, AZ = +1
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The bit to the left of the underlined bit is the overflow

bit. Since itisa l, AZ = + 1. Continuing with Y = 0,

S =000000
100000
0100000, AZ

]
1
—

S =100000
100000

1000000, AZ = +1.

Hence the output alternates t 1, -1, +1, -1. ..

which is a net change of zero for the integral Z.

Examgle 7

C
o
(g
wn
I
o
p
2]
o
o]
n
4

0 max

1011111, AZ = +1

1011110, AZ = +1
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S =011110
111111

1011101, AZ = +1

Thus the maximum Y causes the maximum positive rate of

change of Z. AZ = +1, +1, +1. ..

Exam21e8
LetS, = 0andY = 1/2Y .
0 min
Y . = 00000 = -16
min -
1/2Y ., = 01000 = - 8
min -
So= lOOOO
Y = 01000
11000, AZ = -1
01000
00000, AZ = +1
01000
01000, AZ = -1
01000
S =S _ = 10000, AZ = -1
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This is half of the maximum negative rate of change. All
three of the above examples have been for Ax always being +1.

When Ax = - 1, the operation S - y is to occur.

Mayorov suggests that when Ax =-1, the one's comple-
ment of Y should be added to S. However, this writer feels that

this introduced unnecessary error.

To illustrate,

Example 9
Ax = -1(constant) Y = 1000
S, = 1000 Y= 0111
S, = 1000 1011
0111 0111
1111 Az=0 0010 Az=1
0111 0111
0110 Az=1 1001 Az = 0
0111 0111
1101 Az=0 0000 Az=]
0111 0111
0100 Az=1 0111 Az = 0
0111 0111

| b
o
[—
[a—
D
N
]
o

Jr—
ot
—
(]
D>
N
]
o
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The rate of change of Z should be zero; hence, Az should
alternate between + 1 and - 1. However, after 10 iterations
Z Az = - 2. The reason for this discrepancy is that 0111isby
previous definition equal to - 1. This only points up the fact that the
one's complement differs from the two's complement by one in the
least significant bit. For N information bits, the error produced

for Ax = - 1 (constant) is given by,

€ = Z_N M where M is the number of iterations.

If the two's complement of Y were added to S when
Ax = -1, the result would be exact. Notethat7(1000) =
1000. It has already been shown that successive additions of

1000 produce alternating + 1 and - 1 for Az.

Another approach which will insure an exact result when
Ax = -1 is to actually perform the subtraction S - Y. If an
adder/subtractor were used for 22, then there would never be any
need to take the one's complement or two's complement of Y. It

has been defined that Az = + 1 when there is an overflow. But if a

subtraction were to occur when Ax = - 1, what is the meaning of
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an "overflow" in the S register ? In subtraction, rather than an

outgoing carry, there is sfitnetimes an outgoing borrow.
example below, the outgoing borrow will be noted.
Example 10
I.aetS0 =0, Y =8, Ax = -1, -1, -1, -1
SO = 10000
Y = 11000
Sl=(So-—Y) = 11000 B0=1
- 11000
SZ = 00000 BO =0
- 11000
S3 = 01000 BO = 1
- 11000
S4=S0 = 10000 Bo=1
Recall example 8 where S0 = 0, Y = -8, and

In the

Ax = +1, +1, +1, +1. Note that examples 8 and 10 are actually

the same integration. In example 8, the output sequence for Az

was - 1, +1, -1, - 1. The similarity to the sequence of

outgoing
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borrows in example 10 is obvious. It seems that when subtracting,

ifB0 = ] then Az = -1 a.ndifB0 = 0 then Az = + 1. This de-

duction is true and is proved below:

To Prove : The outgoing borrow, Bo, produced by

subtracting N from M is the complement of the outgoing carry, CO,

produced by adding the two's complement of N to M.

Proof: Let M and N be binary numbers of equal
length.

Let n be the number of bits in M and N, including sign
bit.

The two's complement of N, 7(N), equals 2" - N, where

n is the number of bits in N.

There are only two possible cases for M - N; either

N>MoerN.

Case 1 N>M

The subtraction M - N will result in an outgoing borrow.
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M+ 7(N) = M+2" - N
= 2"+ (M - N)
= 2" _ (N-M)

N>M > (N-M) >0

Hence, 2" - (N-M) < 2"

All numbers less than 2" can be contained in n bits. An
overflow would be indicated by a 1 in the n + 1 bit. Hence there is

no overflow. C0 = 0

Case 2 M >N

The subtraction M - N will not produce an outgoing
borrow. B0 =0
n
m+7(N) = M+2 -N
= 2"+ (M -N)
M >N > (M-N)> 0

—

Hence, 2"+ (M -N) > 2"

All numbers greater than or equal to 2" cannot be con-

tained in less than n + 1 bits. Since M has n bits, M < 2"



A ——

(C2"+ M -N)]

fn
N
]
—
N’

ax

+
Since 2” 1 2™ 4 (M - N) > 2™ there must be a 1 in the n + 1

bit. Therefore, C: = 1 . Q. E. D.
Adders

It has been stated earlier that the Y register must not over-
flow during an integration process. However, if it is permitted to
overflow, the integrator can be used as an adder. Figure 5 shows

the schematic for an integrator which is wired as an adder,

Initially, the Y register is set to its maximum positive
value, + max, and Ax is always + 1. First disregard u, v, and w.
The first Ax pulse will produce Az = + 1. Since Az is fed back into
the dy input, it will cause the y register to change from + max to the
maximum pegative value, - max. The next Ax pulse will produce
Az = - 1, which will return the Y register to + max. Hence, for no
inputs u, v, and w, the output alternates between + 1 and - 1. If u,

v, and w would produce Z Ay = + 3, then the next three Az outputs

would be - 1 ———— neglecting future inputs. In this way the



24

dx input
dz output
® -
a /
v dy input /
i
Figure 5 Schematic of an Adder
11dx
dz
7 /
N
6%Y

Figure 6 Schematic for Example 11
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integrator adds but with' sign change and time delay.

dz _ du . dv | dw
T odt dt dt dt

Integrator Modes

The assumed mode of the integrators in most discussions

is the interpolative mode. This is when upon receiving Ax and Ay,

the present contents of the Y register are added to S. At the end of

the addition cycle,

i+1 i i

Yo =Y v 4y

The extrapolative mode differs in that the new value of

y is added to S.

¢hen, S

+
i+1 Si Yi+1

+ .
Yiv1 =45 tH

The choice of mode of an integrator is dependent upon its

position in the schematic of the solution. The interpolative mode
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gives greater aé':curacy when the dy inputs are integrator outputs
which have occurred in the same or a previous integration period.
When the dy inputs are the outputs from an integration occurring at
a future time, the mode should be extrapolative. In an actual DDA

the mode of each integrator would be set manually.

Scale Factors

G. F. Forbes has proposed a method of scaling to aid in
solving problems on a DDA. The following is an example taken from

his book, Digital Differential Analyzers:

Examnle 11

Given: The scale of input dx is 2048 pulses per unit.
The scale of input dy is 64 pulses per unit. The maximum absolute

value of y is to be less than 88 units throughout the integration.

Determine the scalerpf the output, dz, and the integrator
length, i.e., the number of bits necessary for the Y register so

that it does not ovejrflow.

In the schematic representation of the integrator,

Figure 6, the scale is indicated by writing the power of two rather
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than the number itself.

The scale of dy is 6, (26 = 64). The number of binary
bits necessary to contain 88 units is 7, (.2‘7 = 128). Hence the
scale of y is 7. The input dy is added to the sixth bit to the right
of the binary point and there are seven bits to the left of the
binary point. Thus the integrand length is 13, (7 + 6 = 13).
Usually the integrand length is referred to as the integrator length

since both the Y and S registers are the same length.

If y were unity, one unit of dx input (Zu pulses) would
11,7 4
produce 2°°/2 = 2 output dz pulses. These pulses must re-

present one unit of z, thus the scale of dz is 4.

In general, the scale of y plus the scale of dy is equal to
the integrator length. The scale of dx minus the scale of y is equal
to the scale of dz. When the output of an integrator is used as the
input to another or the same integrator, the scales must be the

same.

These conclusions may be derived mathematically by
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considering the basic equation, dz = ydx.
dz = p-N ydx for N bit registers
Inse:!'ting scale factors
§ dz = p'N sy y S_dx

Since the integrator must produce dz = ydx,

Sdz=p-NSSdz
Yy x

The scale factors are usually chosen to be whole number powers

of the base of the notation in use.

Redefining,
Sz Sy Sx
= . = ;0 S =
S =P SY p x = P
S S S
-N
P z dz = p P y P x dz
Sz N SY Sx
P = P P P
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S =85 -m (3)

Forbes discusses the generation of trigonometric func-
tions, algebraic functions, inverse trigonometric function, normal-
ization, differentiation, solution of simultaneous equations, complex

functions, complex polynomials, and many other uses of a DDA.

For many problems, the following procedure suggested by

E. L. Braun may be used:

1. Reduce to a set of differential equations.

2. Isolate the highest derivative of each dependent
variable by putting it on the left side of the equation

and all other terms on the right.

3. Assume the highest derivative is known, and
by integrating it, generate all lower derivatives

required in the problem.

4. Combine the variables on the right side of the




30

equation and use this sum as the source of the

assumed highest derivative.

ExamBIe 12
aX +bx +cx=0
¥ = -blax-clax

This is shown in Figure 7.

The schematic for this problem is shown in Figure 8.

Appropriate scaling can be done when the approximate

range of each integrand and the desired accuracy are known.

Computer Program

Before beginning a hardware design of a digital inte-
grator, it was felt that a computer simulation would be helpful
in understanding and evaluating the simpler, yet confusing,

method of binary transfer of increments. The following flow chart

was used in writing this program:

IL = integrator length

S = scale of x
X
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- b/a

- c/a je

Figure 7 Block Solution for Example 12

dt

-b/a - () Ak

£5) x‘

Figure 8 Schematic for Example 12
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M = maximum value of y
ACTY = actual y value

F(x) = a separate subroutine which provides the value
of the dependent variable when given a particu-

lar value, x, of the independent variable.



READS , S, M, X, X, Z
IL =M + S
y
S =8 -M
IL
Y =8, =2
N = 1
LOOP:
N N):1> *
X(N) = X(N-1) + z**(-sx) X(N) = X(N-1) - 2**(-sx)
Y(N) = F(X(N)) + 2%*IL Y(N) = F(X(N)) + 2%*IL
!
CY(N) + S(N-1) : 2#*(IL + 1)) {S(N-1) - Y(N): 0 >
< > < >
5(N)=Y (N)+S(N~1) 5(N)=Y(N) + S(N)=S(N-1)-Y(N)/S(N)=S(N-1)-Y(N)
DELZ(N) = 0 (N-1)-2%#(IL+1)}| + 2*%(IL +1) |IDELZ = 1
ELZ(N) = 1 DELZ = 0

Tm

\

/

CTY(N) = (Y(N) - 23%%IL)/2%*

1————< DELZ(N) - 1>—‘

=
#

Z(N) = Z(N-1) + 2#%( - S )

N

Z(N) = Z(N-1) - z**(-sz)

(IX(N) - X, |+ 2 (-s)

ISTOP]

<

>

1
[N'=N+1, GO TO LOOP]
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Prior to writing the subroutine, F(x), the following flow

chart was prepared:

PG | s (oM - 1)) D

P e

Y - reglster FHI = SHREM
overflow FLO = -(2**M)
*_ N =1
STOP LIMIT = SY +M +1

|FTRY = (FHI + FLO)/2]=

C2|FTRY - F(X)| : (2%%-sY) >

/ \>
| FXx = FTRY] [FTRY : F(X)]
<
[FHI = Fﬁ/ |[FLO = FTRY]|

2 : LIMIT ;

; g R

{|FHI - FX)| : | F(X) - FLO| >[N = N+1
< >
I
[FX = FHI] [FX = FLO]

FX = (2%%SY) FX + 2%* (SY + M)]

[RETURN]
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The two simulated integrations included in this report
approximate the area under the parabolay = 8 - 2x2 from x = 0 to

x= 1. This is shown in Figure 9.
The schematic for the first run is shown in Figure 10.

The program was given the scales of dx and dy and the
maximum value of y. The integrator length and scale of dz are

determined by

It will be noted that in the program the binary method of
increments is used for dx and dz but not for dy. However, the value
of y used in the calculations is limited in accuracy by the number of
bits in the Y register. Note in the results that for the first 40
iterations, the actual y value changes from 8.0 to 7.99779. This
change is too small to change the value in the Y register which is
significant to 6 binary places (de = 6). The printed value of 1536
for the Y register includes the sign bit and ignores binary point. It

may be decoded as follows:
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— <

Figure 9 Simulated Integration

10 dx

6 dz

/10

63y

Figure 10 Schematic for First Computer Run
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1536 - Zlo(sign bit) = 1536 - 1024
= 512
(512)10 = (1ooooooooo)2

Inserting the binary point six places from the right (dezé),
(1000.000000), = 8.0, the value of y.

Note that the Y register does gradually change since on

the last iteration it is 1408 when y has decreased to 6.

For each step if Ax = 1, the Y register is added to the
S register and if Ax = 0, then Y is subtracted from S. If there is
an overflow after addition or no outgoing borrow after subtraction,
then Az = 1; otherwise Az = 0. A summation of all previous Az
outputs is the value of the integral, recorded in the last column.
Note that when Az = 0, an increment of Z (. 015625 = 2-6, since

Sdz = 6) is subtracted from the summation.

The three zeros for Ax (cycles 2, 4, and 5) may be inter-
preted as increments in the negative direction on the x axis. The
value of z. for this initial period oscillates then goes negative after

cycle 5. This may be explained since at this point ZAx = -1, hence
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the actual value of x is to the left of the y axis. The area should be

negative at this point.

Since de = 10, the value of x = 1 should occur after

210 = 1024 cycles. Because three of the Ax increments were nega-

tive, there must be three extra positive Ax increments or a total of

6 extra Ax.

1024 + 6 = 1030, the printed number of iterations.
(The three negative Ax increments were inserted into the program

for illustrative purposes only)

The final value of z is compared with the actual value to

determine the error.

7.343750 = calculated area
- 7.333333 = actual area
e= .010417

In the second approximation of the area, the only change
was the scale of dx from 10 to 11. Now rather than summing 1024
strips between 0 and 1, the integral will be the summation of 2048

strips. Hence, the running time is doubled.
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‘ 7.333333 = actual area
- 7.328125 = calculated area

e = . 005208

This illustrates the inverse relationship between running
time and error. By doubling the running time, the error was

halved.

The results of this program provided the incentive to

design an integrator with the binary method of increments.




CHAPTER 1III
DESIGN AND IMPLEMENTATION

Integrator Design

This chapter deals with the design of an integrator
which could be used as the basic unit in a parallel DDA. The
increments Ax, Ay, and Az are coded in the binary system. A
serial adder/ subtractor is used to combine Y with the contents of
the S register; thus, the inaccuracies involved with one's comple-
ment addition (see example 9) are avoided. Although no greater
accuracy will result, an adder/subtractor is used to combine

Z Ay and Y to simplify circuit design.

The integrator is capable of operating in either the
interpolative or extrapolative mode. For versatility of inter-
connection, the integrator length may be varied from 4 to 10. Also,
the Y register may be permitted to overflow, thus making possible
other uses such as an adder to combine pulse trains. The Az out-

put is compatible with both Ax and Ay inputs.

The block diagram is shown in Figure 11. This diagram
when expanded to include timing and more interconnections is

shown in Figure 12.

44
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Az @— S - Register

AX — o ADD/SUB - |

Y - Register
]

Ay — o ADD/SUB  |a— |

ZAy

Figure 11 Integrator Block Diagram
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FIGURE 12 DETAILED BLOCK DIAGRAM

Px
C2
]
(A7) V [ s-RecISTER —
3y F
+ Le—Az
—B“ +AX
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’e _G
MODE ¢
[ (+]
¢ (Nl
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:I r PUSH BUTTONS
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’"DJ v Y-REGISTER
e F
i q
I—— [
- ZAy
o+ D-REGISTER
S '+AY
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(IL+2) PULSES
DOWN COUNTER
A P Py
o o o
CLOCK INTEGRATOR INITIALIZE END OF BEGIN NEXT
FREQUENCY LENGTH (IL) SUMMATION SUMMATION
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OEeration

Before beginning an integration process, the initialize
pulse resets the Y and S registers to zero and resets C1 to zero.
If the initial value for Y is other than zero, it is read into the Y
register via parallel inputs. During the start pulse, PZ’ the inte-
grator length is set into the down counter, Z Ay is read into the
D register, the S register overflow bit is set or reset, and C2 is
reset. After P2 the down counter emits IL + 2 pulses at the clock

frequency to completely shift the registers through the adder/sub-

tractors. The end of summation pulse, P, sets or resets the

1
ADD f{lip-flop, depending upon the signs of Ax and Ay. The cycle is

then repeated.

The mode switch, also in Figure 12, permits choice of
the old value of y which is in the register or the latest value of y as

it comes out of the adder/subtractor.

The detailed logic design is in Appendix I. These cir-
cuits were divided to fit on 5 printed circuit boards approximately

4 3/4" x 5'" as follows:
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2 boards: two 12 bit shift registers.

1 board : two full adder/subtractors.

2 boards: one 3 bit shift register,
one 4 bit backward counter, and
assorted gates and flip-flops for

timing or control.

The complete integrator and the associated control unit
are shown in Figure 13. Other views of the integrator and two of
the circuit boards are shown in Figures 14 through 17. The lights
are also on circuit boards for easy insertion. They display the
contents of the S and Y registers. The upper rotary switch has
seven positions for setting the integrator length, i.e., the length
of registers S and Y. The lower two position rotary switch is
set depending upon whether there is one or more than one dy input.
When there is one dy input, the D register is set to 001; when there
is more than one dy input, the switch permits Z Ay to be parallel
shifted into the D register by an adder unit which it is assumed is
part of the DDA. The push buttons across the front panel are for
presetting an initial condition other than zero into the Y register.
The toggle switch determines the mode — interpolative or

extrapolative.
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Figure 14 Integrator - Front View




Figure 15

51

Integrator - Rear View
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Circuit Board Containing

Figure 16

Two Full Adder/Subtractors
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Circuit Board Containing a

Figure 17

12 bit Shift Register.




CHAPTER 1V

COMMENTS AND RECOMMENDATIONS

The use of integrated circuits for this project presented
no major implementation problems. No noise problems or capaci-
tance problems were encountered. Five printed circuit boards
were used to contain the circuits but the integrator presented in
this report could easily be placed on four boards at an average of
15 cans/board. A greater packing density could be obtained. using
multilayer boards. The previous pictures of the boards show that :
the spacing could be decreased if interconnections were made on

more than two planes.

Another space-saving approach would be to use integrated
circuit modules. The integrator is basically two shift registers and
two adder/subtractors. Hence, it is conceivable that the bulk of the

integrator could be contained in four cans.

The potential accuracy of the integrator is limited by the
length of the shift registers. Thus, if greater accuracy than the
results in Appendix IV is desired, the integrator registers must be

greater than 12 bits.
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An easily overlooked feature of the Signetics integrated
circuits is that they can supply 2 mA at the '"'1" level and sink
12 mA at the '""0" level. Therefore, if a lamp is to indicate the state
of a binary element, it should be connected between a positive volt-
age and either output of the element. Excluding other loading, the
lamp may operate with up to 12 mA without overloading the element.
The "'0'" voltage is less than .6 volts while the supply voltage is 4.5
volts. Hence the ideal lamp should require a voltage of 4.5 - .6 =
3.9 volts. A 3 volt lamp was used in this project and diodes pro-
vided the necessary voltage drop between the lamp and the supply

voltage.

In the interpolative mode the integrator may be operated
with a clock frequency up to 1.6 Mc. However, in the extra-
polative mode the maximum rate is 850 Kc. This is due to the
fact that in the extrapolative mode the two adder/ subtractors
operate in series rather than in parallel. This situation could be
remedied by designing one synchronous arithmetic unit which would

implement the following equations:
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Mode Outputs
(letters refer to registers)
Interpolative 01 =Y 4+ D
0, = S +Y
Extrapolative 01 =Y + D
»
0, = S +(Y +D)

With this arithmetic unit the maximum frequency should

not be mode dependent.




APPENDIX 1

LOGIC DESIGN

Before considering the detailed logic, it is necessary to

mention some details about the micrologic used for implementation.

The input of an AND gate is a standard sink load. The
input of an OR gate is a standard source load. The flip flop J'and K

inputs represent 1/2 sink load each. The P_ and P

I K inputs are one

source load each, and the clock input is 3/4 gink load. The NORS,
ORS, and flip flop outputs have a maximum fan-out capability of
12 source loads plus 5 sink loads. The fan-out of the AND gate is
limited to 10 source loads. These rules are adhered to in the

circuit to f'ollow .

All logic is positive-true, i.e., positive voltages corres-
pond to logical 1 or true, while negative voltages correspond to
logical 0, or false. The elements may be used for functions other
than their name by defining other than positive-true on their inputs

and outputs. See Table 1.

The configuration for setting or resetting the S register

overflow bit was designed by noting that the carry produced by
57
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Logical Circuit Element
Function NOR | AND | OR
] 1
=+ el ]
NOR + + -
_+ | D ;}_ L}
ol il i o
OR - -_ +
el =+ il
NAND _ D; N }; + )t
= _t ]
AND

Qj

Table 1 Logic Elements

g
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adding the two's complement is the complement of the borrow pro-
duced by subtraction. This was proved earlier in this paper.

When subtracting, an outgoing borrow will produce a one in the
overflow bit; no outgoing borrow, a zero. But in both cases the
opposite is necessary for the proper Az output. Hence, by setting
the overflow bit to a one prior to the summation (When Ax = -1),
then the final state of the overflow bit is complemented. If Ax = + 1,

the overflow bit is preset to zero since addition will occur.

If the output of the integrator is to be minus the integral,
the + Az and - Az output lines are interchanged. Then the comple-

ment of the output pulse train is produced.

Adder/Subtractor

The adder/subtractor must be a ''full" adder/subtractor;
i.e., it must accept a borrow or carry input and produce a borrow
or carry output when appropriate. In Table 2 the truth table is

shown.
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C /B

S/D

ADD

C./B,

Table 2 Truth table for A + B, A - B.

The maps for S/D and CO/BO are in Tables 3 and 4.
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A B 00 01 1l 10 CADD A B 00 01 11 10 CADD
—
0 0 0 0 1 1 0 0 0 0 0 1
0 1 1 1 0 0 0 1 1 0 1 1
1 1 0 0 1 1 1 1 0 1 1 1
1 0 1 1 0 0 1 0 0 0 1 0
Table 3: Table 4:
Map for S/D Map for CO/BO

S/D = A¢BaC
S/D = ABC + ABC + ABC + ABC

- ———

C. /B, = ACADD +A B ADD + BC
+ AC(ADD) + AB(ADD)

C,/B, = AADD (B + €) + A(ADD) (B + C) + BC

Other equations are possible, but since the micrologic
gates have three inputs, these equations were chosen to minimize
gates. One four input gate is necessary. This is implemented by

using two diodes on one of the gate legs as shown in Figure 18.

The shift register in Figure 19 contains all necessary

input and output lines for either register Y or register S. This
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(o]

(B+C)

D+_,

ADDO—

Ko_—_

8
C

Figure 18 Full Adder/Subtractor
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Figure 19 Shift Register
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permits one circuit board design to meet the needs of both regis-
ters.

The down counter is shown in Figure 20. The integrator
length is set on a rotary switch before starting the process. For
each cycle the input levels will be such that IL + 1 is read into the
counter. It will then emit IL + 2 shift pulses to the rest of the

integrator.

Figure 21 shows the D register. Any number representing
2 Ay from 0 to 7 may be set into this register. The sign of = Ay is
recorded by the ADD flip flop (shown in Figure 12) whose inputs are
Ay and - Ay. It is assumed that a separate unit which combines
several dy inputs will feed this device when more than one dy input

is desired.

The control unit in Figure 22 was built in addition to the
integrator to test its operation. A control similar to this would be
adequate for up to 12 integrators. The unit provides to the inte-

grator a basic frequency and the pulses P1 and P, at the proper

2

times. After the start pulse the eleven bit backward counter per-

mits 210 P2 pulses to go to the integrator. The pulse generator

produces from 400 Kc to 1.8 Mc operating frequency when a 15K

potentiometer is used for R.




SHIFT
PULSES
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1b4

_AB‘H:

Figure 20 Down Counter

(IL+D)
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n-n—"\
)
a-b
D,
# +
w
SHIFT
o
Figure 21 D Register
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APPENDIX II
INTEGRATED CIRCUITS

Table 5 itemizes the amount of logic necessary to imple-

ment the integrator and control unit.

INTEGRATOR
QUANTITY ITEM
35 J-K binary elements
16 Dual NOR gates (2
gates/can)
4 Dual OR gates

Dual AND gates

25 gate cans
35 binary element cans
TOTAL 60 TO-5 cans for integrator.

CONTROL UNIT

QUANTITY ITEM
16 J-K binary elements
4 Dual NOR gates

Dual AND gate

5 gate cans
16 binary element cans
TOTAL 21 TO-5 cans for control
TOTAL 81 TO-5 cans for project.

Table 5° Quantity of Logic Elements Used
68



APPENDIX III

TIMING

The delays associated with the logic elements are noted in
Figure 23. The timing diagram for critical voltage levels is

Figure 24. All measurements are in nanoseconds.

69



T1 = 30 - 60 ns
TZ = 20 - 35 ns
AND Gate
3.5v CLOCK INPUT PULSE
A 100 1.4v
t¢=20ns
OUTPUT
l.4v
T
— T,
2.8v
OUTPUT
T1 = 57 - 80 ns
T2 = 95 -~ 130 ns

J-K Binary Element

Figure 23 Timing Delays

H
i

35 - 40 ns
50 - 70 ns

H
"

NOR Gate

2382\;> PRESET J-K
100 INPUT PULSE

ff =20ns

T x OUTPUT
(I.4v

— TS_.'

—— Ty —

Disl

OUTPUT

T3 125 ns (max)

Ty

1

150 ns (max)

J-K Binary Element
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APPENDIX IV

EXPERIMENTAL RESULTS

Problem: Solve the differential equationy = y. Figure 25 shows

the schematic of the solution.

The solution to this equation is y = e . In the results to

follow, the initial conditions (xo, yo) = (0, 1) were used.
Case 1

s_ = 10, 0<x<1l, M =2

S =S - M= 8

z x

S =8 =8

y z

IL = S_+M = 10,

These conditions utilize the integrator to its greatest
accuracy for calculating the value of e. The integration process
. . .. . . 10
will, in effect, divide the inveral 0 < x < 1 into 2 = 1024 Ax
increments and sum the value of y at each Ax. The mode is inter-
polative for best results. Since in the generation of an exponential
the early values of y greatly influence its later values, the value of

y produced by the integrator is dependent upon the initial Ay.
72
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Figure 25 Schematic fory =y
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The initial Ay is known only if the sign of the slope :dg{_ is

known at x . For the exponential, ( % )0 = +. Therefore, a better

result should be obtained if (Ay)o = + 1. The result in Table 6

when (Ay)o = + 1 is that

e = 10.10111000
2.00000
.50000
, 12500
.06250
.03125
= 2.71875
The actual value of e is 2.71828 . . . The calculated

value is in error by + 0.00047. The least significant bit in the

-8
calculated value represents an increment of 2 = .0039... Hence
this result is the closest possible value to e which is expressible in

10 information bits.

Cases 2 - 9

The maximum y is varied from M = 3 through M = 10

although the integration is only to x = 1 (y=e).
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Cases 10 - 18

Same as cases 1 - 9 except that the mode is extrapolative.

Case 19
S =9, 0<x<1, M = 2
x —
S :.’S _M:7
z x
S =8 =7
y A

-
r
"
wn
-t
g
"
©

Here the integrator length was reduced to 9 since the
number of Ax between 0 and 1 was reduced from 1024 to 512. The

mode is interpolative.

Cases 20 - 22

M varies from 3 through 5.

- Cases 23 - 26

Same as cases 19 - 22 except that the mode is extrapolative.

Case 27

S =10, 0<x<2, M = 3, Interpolative



go to 2,
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S =8 =17
Yy Z

IL S + M =10
Yy

n

This is the same as Case 1 except that x is permitted to

Cases 28, 29

Case 30

Hence, the result is the value of ez. (ez = 7.3891.)
2
For(Ay)o=1, e = 111.0110110
7.000000
250000
125000 7.4219
.031250 7.3891
.01_5625 errar=0. 0328
7.421875
2
For(Ay)0=0,e = 111.0100110
7.000000
.250000 7.3891
.031250 7.2969
. 015625 erra=0.0922
7.296875
Same as case 27 exceptM = 4, 5.

M =5, 0<x<3, Sx = 10, Interpolative
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e =10100.10100
20,000
.500
. 125
Calculated e3 = 20.625
Correct e3 = 20.086

Cases 31 - 34

Same as cases 27 - 30 except that the mode is extra-

polative.

Cases 35 - 37

S.=9, 0<x<2, M=3,4,5

Interpolative Mode

Cases 38 - 40

Same as cases 35 - 37 except that the mode is extra-

polative.

Case 41

S =10 1<x<2, M = 3, Interpolative.
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Case 27 produced the value of ez starting from the initial

conditions (x, y) = (0, 1). Here the inserted initial conditions are
(x, y) = (1, §)-
2
e = 111.0110010 for(Ay)0=1
7.000000
.250000
.125000
.015625
Calculated e2 = 7.390625
2
Correct e = 7.3891
error = 0015

This result is the closest possible value to e2 which is

expressible in 10 information bits.
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Case No.

[

O 00 Ot WY

- e e e o e m W e m wm m wm wm w e = o=

TABLE 6

EXPERIMENTAL RESULTS

(Ay), = 0

10.10110100
010.1011000
0010.101010
00010.10100
000010.1000
0000010.100
00000010. 00
000000001.0
0000000001.

10.10110100
010.1011000
0010.101100
00010.10100
000010.1000
0000010.100
00000010. 00
000000001.0
0000000001.

10.1011000
010.101010
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(ay), = 1

10.10111000
010.1011110
0010.110000
00010.11010
000010.1110
0000011. 000
00000011.10
000000100.0
0000000101.

- e m e e = w = m s = @ @ = e @ = = - = -

10.10111010
010.1011110
0010.110000
00010.11010
000010.1110
0000011. 000
00000011.10
000000100.0
0000000101.

10.1011100
010.110000
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21 0010.10100 0010.11010
22 00010. 1000 00010.1110
23 10.1011000 10.1011110
24 010.101010 010.110000
25 0010.10100 0010.11010
26 00010, 1000 00010.1110
27 111.0100110 111.0110110
28 0111.010000 0111.011110
29 00111.00100 00111.10010
30 10011.01100 10100.10100
31 111.0101000 111.0111000
32 0111.010000 0111.100000
33 00111.00100 00111.10100
34 10011.01110 10100.10110
35 111.001110 111.011100
36 ‘ 0111.01000 0111.10010
37 00110.1110 00111.1100
38 111.010000 111,011110
39 0111.00100 0111.10010
40 00110.1110 00111.1100

- e w wm = = wm o= - ™ e @ m wm m e e g W @ wm e m m @ = m =

41 111.0101100 111.0110010
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If Ax is made - 1 rather than + 1, the limits of integration
'm'aj} be reversed, Therefore, for each of the above cases when
Ax is changed from + 1 to - 1 after the forward integration, the

reverse integration will return the integrator to its initial condi-

tion, (xo , yo).

When Ax is set at - 1 and the initial condition is (xo, yo) =

1\ X X . . 1. . .
y A/ LIICLL LUCT LU&LUWLILS L TOULLD ax T PJ- vuuLcCcu.

el = 0.010111100
e f = 0.001000110
> = 0.000011010
et = 0.000001010
e® = 0.000000100
et - 0.000000010
el = 0. 000000000
e ! = 0.010111100
. 2500000
. 0625000
. 0312500
. 0156250
. 0078125
Calculated e:a = . 3671865
Correct e = .3678794
.3671875

error = . 0006919
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The least significant bit is 2”7 = 0.001953 ...

Hence this result is the closest possible value to e_1 which is

expressible in 10 information bits.

The above values of e for 0 > x > - 7 were produced regard-
less of mode or (Ay)o. The indifference to (Ay)o is because in the
negative direction the later values of e™ do not depend so heavily
on the early values. The made has no effect since in the interval
- 7< x £ 0, the difference between Y, and Vi1 is insignificant to

9 binary places.
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